
If the Queue Fits

A Novel Task
Let me guess: You need to make HTTP requests to some �aky provider to

record numerous points of data for many different customers.

All at Once
Node supports concurrency, so why not?

await Promise.all(allTheStuff);

"aLl aT oNcE"
Rate limits, resource contention, errors, chaos.

One at a Time
Okay then, so we'll go slower.

for (const thingToDo of thingsToDo) {
 await thingToDo();
}

"oNe aT A tImE"
Slow as molasses.

What Do We Want?
Concurrency / parallelism
Crash resilience
Error handling and retries

RabbitMQ
Networked message-broker
Easily solves concurrency and crash concerns
Number of consumers ~ resource usage

RestOfTheRabbitMQ
Great for generic messaging
Many useful features
Job queue requires more work

RI RetailLink Services
Used amqplib directly
Inconsistent error handling
Hard-to-follow retry logic

Queueball Begins
RabbitMQ = good, lots of boilerplate = bad
Consistency can help avoid previous issues
Stephen vendored it into analytics-scheduler

Example
const config = {
 rabbitmqUrl: 'amqp://guest:guest@localhost:5672',
 name: 'queueball-test',
};

const producer = new Producer(config);
await producer.start();

const consumer = new Consumer(config);
consumer.processJob = async ({ payload }) => {
 console.log(payload.message);
};
await consumer.start();

producer.enqueue({ message: 'Hello world!' });

Punched in the Face
Queued jobs are a happy path
Things rarely go as planned
Additional techniques can help

Resource Locks
Lock resource when job starts
Per user, or even whole job type
Re-enqueue con�icting jobs
Redis or Postgres can work

await this.sessionsRepo.manager.transaction(async (manager) => {
 const lockKey = this.generateLockKey(`supplier-session-${supplierId}`);
 await manager.query('SELECT pg_advisory_xact_lock($1)', [lockKey]);
 // ...
}

Job Striping
Space resource contenders apart
AAABBBCCC -> ABCABCABC

const jobPayloadGroups: JobPayload[][] = [];

for (const supplier of suppliers) {
 const jobPayloads: JobPayload[] = [];
 jobPayloads.push(...someSupplierJobPayloads);
 jobPayloads.push(...moreSupplierJobPayloads);
 jobPayloadGroups.push(jobPayloads);
}

return zipArrays(...jobPayloadGroups);

Structure Tips
Job generation can be a job
Prefer smaller, simpler jobs
Have contextual error messages

Tooling Tips
Use Kube for scheduling
Add job params to Sentry errors
Use trace ID when searching logs

My Ask
If you use Queueball, let me know how I can make it better.

