Thrown for
an Event Loop

Uptime Bot 10:05 Am
Health checks for APP are failing.

Logs Explorer

Query Recent (5) Saved (0)

@© Last 1 hour Q

|

Search all fields

Log fields

. Histogram

Histogram
<

6:00 PM

(Aug1,5:53:30 PM
Query results 0 log

entries

SEVERITY TIMESTAMP

into the logs

©; rerINE score (RED

GD SHARE LINK ‘®\ LEARN

Severity ~

Suggested (0) Library

[save

Resource ~ Log name ~

. Show query

[Create metric A Cr More actions

Q @

Aug 1, 6:53:30 PM

Correlate by ~ & Download

Requests are timing out right after we kick off a specific job

The Culprit*

function computeItemListData(itemList) {
const data = [];

for (const item of itemList) {
data.push(computeltemData(item));

}

return data;

}

*Based on a true story

“Blocked event loop?” Easy.

async function computeltemListData(itemList) {
const data = [];

for (const item of itemList) {
data.push(computeltemData(item));

}

return data;

Uptime Bot 10:31 am
Health checks for APP are still failing.

Let's take some time to really figure this out

Preemptive Scheduling
Execution is interrupted at
arbitrary points.

For example:

Anything using separate OS
processes or threads

| Scheduler || Task A ‘ | Task B ‘

' Resume

i) DN
| Partial work on Task A |
Interrupted

' Resume

M\
Interrupted 1
' Resume
| ‘ More partial work on Task AD
Interrupted

' Resume

'| More partial work on Task B 3

Interrupted |

.' ScheAduIer. | Tas:k A vTas;k B“

’ Scheduler \ Task A | | Task B ’

' Control given

| Completion of sub-task A.1 H

Cooperative Scheduling

Control yielded 1

' Control given

Has explicit point where
execution is suspended.

| | Completion of sub-task B.1 \‘

Control yielded

For example: e
e NGINX modules | jiComp|eti0nOfsub-taskA,zt\""j
i ' Control yielded ' |
o Python asynC|O ‘ Control yielc cj
i ' Control given
e Node,s ‘

-
.

'| Completion sub-task B.2

Control yielded |

scheduler| | Taska| | TaskB

Node.js

e Ryan Dahl inspired by NGINX and Rack; Web-centric
e Single-threaded, async I/O using event-loop

e (Google’s V8 + standard library for I/O

The Node.js Event Loop

| START |

| timers = ‘setTimeout()’, 'setInterval()’ |

-

1. pending Ca”ba(ks ’7‘ Deferred /O ca"baCkS ;’i\j‘f'ﬁ

' AN
N o d e .j S ‘ idle, prepare ‘ Internal use only

Event Loop ! |

i poll == New I/0 events, callbacks =

\v check = ‘setimmediate)” ")

¥

| close callbacks ~— e.qg. socket.on('close’,..)” |

Back to the issue at hand
No async of any kind involved
here, so no other I/O is handled

How can we simply yield control
without involving |/O?

Old Loop

computeltemListData loop

false ” N
<_more items in itemList? ~

7 ltrue :

' computeltemData(item) |

__| I/0 cannot be handled at any
‘| point during the loop.

setimmediate(callback], ...args])

» History

e callback <Function> The function to call at the end of this turn of the Node.js Event Loop
e ...args <any> Optional arguments to pass when the callback is called.

e Returns: <Immediate> for use with clearImmediate()

Schedules the "immediate" execution of the callback after I/O events' callbacks.

When multiple calls to setImmediate() are made,the callback functions are queued for execution in the order in which they are

created. The entire callback queue is processed every event loop iteration. If an immediate timer is queued from inside an executing
callback, that timer will not be triggered until the next event loop iteration.

async function computeltemListData(itemList) {
const data = [];

for (const item of itemList) {
data.push(computeltemData(item));
‘await new Promise(resolve => setImmediate(resolve));

}

return data;

}

New Loop

computeltemListData Ioop)

false ~ . o o N
—._more items in itemList? =€

ltrue

' computeltemData(item) |

-

‘ 1/0 can be handled between |
, | each iteration of the loop.

] Yield to scheduler

l

®

Caveats

e Overheard associated with ‘setimmediate()’

e Some code may need significant structural change

o i.e. function coloring

e Chunk size influenced by requirements and hardware, determined

— 4

by experimentation [N P

Overhead Table*

Chunk ms Sync. full ms Async. full ms Async. time mult.
(computeltemData) (computeltemListData) | (computeltemListData)

1 810 837

0.1 88 110
43 68

12 31

*The numbers will obviously vary by specs,
but the relative effect of overhead should be similar

Upsides
e Simpler to start with
e No need for GIL

e Lighter than threads or processes

Downsides

e Blocking the event loop with CPU bound code
e Multiple processes to scale out for multi-core
o And now worker threads

e Function coloring

Uptime Bot 10:45 am

Health checks for APP are successful. | 4

Latency Bot 10:47 am

Average latency of APP has increased by 8%! B

