
Thrown for
an Event Loop

Health checks for APP are failing.

4 3

Uptime Bot 10:05 AM

We dig into the logs

Requests are timing out right after we kick off a specific job

The Culprit*

*Based on a true story

“Blocked event loop?” Easy.

Health checks for APP are still failing.
6

 Uptime Bot 10:31 AM

4 3

Let’s take some time to really figure this out

Preemptive Scheduling

Execution is interrupted at
arbitrary points.

For example:

Anything using separate OS
processes or threads

Cooperative Scheduling

Has explicit point where
execution is suspended.

For example:

● NGINX modules
● Python asyncio
● Node.js

Node.js

● Ryan Dahl inspired by NGINX and Rack; Web-centric

● Single-threaded, async I/O using event-loop

● Google’s V8 + standard library for I/O

Node.js
Event Loop

Back to the issue at hand

No async of any kind involved
here, so no other I/O is handled

How can we simply yield control
without involving I/O?

Caveats

● Overheard associated with ‘setimmediate()’

● Some code may need significant structural change

○ i.e. function coloring

● Chunk size influenced by requirements and hardware, determined

by experimentation

Overhead Table*

*The numbers will obviously vary by specs,
but the relative effect of overhead should be similar

Chunk ms
(computeItemData)

Sync. full ms
(computeItemListData)

Async. full ms
(computeItemListData)

Async. time mult.

1 810 837 1.03x

0.1 88 110 1.25x

0.05 43 68 1.68x

0.01 12 31 2.58x

Upsides

● Simpler to start with

● No need for GIL

● Lighter than threads or processes

Downsides

● Blocking the event loop with CPU bound code

● Multiple processes to scale out for multi-core

○ And now worker threads

● Function coloring

Health checks for APP are successful. ✅
6

Uptime Bot 10:45 AM

Average latency of APP has increased by 8%! 🚨
7

Latency Bot 10:47 AM

